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Six pigeons responded in a visual category learning task in which the stimuli were dimensionally
separable Gabor patches that varied in frequency and orientation. We compared performance in two
conditions which varied in terms of whether accurate performance required that responding be
controlled jointly by frequency and orientation, or selectively by frequency. Results showed that pigeons
learned both category tasks, with average overall accuracies of 85.5% and 82% in the joint and selective
control conditions, respectively. Although perfect performance was possible, responding for all pigeons
fell short of optimality. Model comparison analyses showed that the General Linear Classifier (GLC;
Ashby, 1992) provided a better account of responding in the joint control condition than
unidimensional models, but a unidimensional model fitted better for the condition that required
selective control by frequency. Our results show that pigeons’ responding in a visual categorization task
can be controlled jointly or selectively by stimulus dimensions, depending on reinforcement
contingencies. However, analysis of residuals confirmed that systematic deviations of GLC predictions
from the obtained data were present in both conditions, suggesting that an alternative account of
responding in multidimensional category learning tasks may be necessary.
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_______________________________________________________________________________

Categorization and concept learning have
long been among the most widely-studied
topics in human experimental psychology
(Ashby & Maddox, 2005; Barsalou, 1992;
Margolis & Laurence, 1999), and recently have
received increasing interest from behavior
analysts as well (e.g., Horne, Lowe & Randle,
2004; Miguel, Petursdottir, Carr & Michael,
2008; and the November 2002 special issue of
the Journal of the Experimental Analysis of
Behavior). Research on categorization with
nonhumans has an important role to play in
terms of understanding the evolutionary ante-
cedents of this complex human behavior.

A binary categorization task may be regard-
ed as a conditional discrimination in which
one of two responses is reinforced depending
on whether a prior stimulus is a member of
one class or another (Zentall, Galizio, &
Critchfield, 2002). In operational terms, cate-

gorization occurs when an organism shows
generalization within a particular class of
stimuli and discrimination between them
(Keller & Schoenfeld, 1950), so categorization
represents a particular type of stimulus control
(Herrnstein, 1990).

One approach to studying categorization in
nonhumans has been to examine the ability of
subjects to categorize stimuli that are compa-
rable in terms of complexity to those that
might be encountered in the natural environ-
ment. For example, in a pioneering study,
Herrnstein and Loveland (1964) showed that
pigeons were able to respond differentially
depending on whether or not a photograph
projected onto the front panel of an operant
chamber contained people or not. Herrnstein,
Loveland and Cable (1976) trained pigeons to
discriminate pictures with or without trees,
water, and a specific person. In all three
experiments, stimuli included images that
were easy to discriminate with whole or large
parts of a person, tree or water and also more
difficult images with only small parts or even
similar-looking components. Results showed
that pigeons were able to classify novel
exemplars from each category correctly.
Herrnstein et al. concluded that it was unlikely
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the pigeons used a feature-based strategy to
discriminate among the naturalistic categories,
and illustrated their point by noting the
difficulty of describing features that would
reliably discriminate between pictures of a
celery stalk and a tree (see Herrnstein et al.,
Figure 3). Other studies involving complex
stimuli have shown that apes can distinguish
real objects from their photographs (Daven-
port & Rogers, 1971), pigeons can distinguish
between paintings by Monet and Picasso
(Watanabe, Sakamoto, & Wakita, 1995), and
California sea lions have the ability to form
equivalence classes with arbitrary non-natural
figures (Kastak, Schusterman, & Kastak, 2001).

At the other extreme of stimulus complexity,
considerable research has studied organisms’
ability to respond differentially to stimuli that
vary quantitatively along a single dimension.
For example, a pigeon’s response to the left key
might be reinforced after a bright light has
been presented on a center key, whereas a
response to the right key might be reinforced
after a dim light (e.g., Davison & McCarthy,
1989). Much of this research has attempted to
test predictions of signal detection theory and
related models for discrimination (Davison &
Tustin, 1978; Davison & Nevin, 1999; White &
Wixted, 1999; see Alsop, 2004 for review).
Although not usually described as categoriza-
tion per se, these studies arrange conditional
discriminations and to the extent that multiple
presentations of nominally the same stimulus
are not identical, satisfy the operational defini-
tion for categorization (Herrnstein, 1990).

Between the extremes of naturalistic and
unidimensional stimuli, there have been few
studies on stimulus control and categorization
by nonhumans in which stimuli vary quantita-
tively along more than one dimension. Such
research would fill an important gap, and
might facilitate the development of more
complex and realistic models for discrimina-
tion and categorization based on multidimen-
sional stimuli. The goal of the present study is
to investigate whether pigeons can respond
accurately in a category task with stimuli that
vary quantitatively along two dimensions.

There has been considerable research with
humans on multidimensional categorization.
Ashby and Gott (1988) developed an influen-
tial paradigm, known as the randomization
procedure, which has been used in many
subsequent studies. Their participants catego-

rized L shapes in which the length of the
vertical and horizontal segments was generat-
ed by sampling from two bivariate normal
distributions. In Experiment 1, the average
vertical segment was longer than the horizon-
tal for one category, whereas the reverse was
true for the other category, so that accurate
performance required attention to both di-
mensions. This category task has been de-
scribed as ‘information integration’, because
subjects must combine values from both
stimulus dimensions in order to make a
category judgment (Massaro & Friedman,
1990). In Ashby and Gott’s Experiment 2,
the average vertical segment was longer for
one category while the average horizontal
segments were the same for both categories,
so that attention to only one dimension was
required. This task has been described as ‘rule-
based’, because when debriefed, subjects can
typically describe their performance in terms
of a verbal rule.

All participants responded accurately in
both tasks, and Ashby and Gott (1988) showed
that the General Linear Classifier (GLC; Ashby
& Townsend, 1986) provided an excellent
account of their data. According to the GLC,
participants represent stimuli in a two-dimen-
sional perceptual space and learn, via feed-
back, a decision bound, which is a line in the two-
dimensional space such that stimuli that are
located above it are associated with one
category while stimuli that are below are
associated with the other category. When a
stimulus is presented on a trial, the distance
from the line determines the probability of a
correct response, with accuracy increasing as
the stimulus is more distant from the line.
Ashby and Townshend showed that the GLC
may be viewed as a two-dimensional general-
ization of signal detection theory (SDT;
Macmillan, 2002), with the linear decision
bound replacing the unidimensional criterion
in classical SDT. Although the GLC is unable
to account for results of experiments that have
shown that humans can apparently use non-
linear decision bounds (e.g., Ashby & Wal-
dron, 1999), it provides a convenient starting
point for investigating how organisms learn
two-dimensional ‘information integration’ cat-
egory tasks in which a linear decision bound is
optimal.

Herbranson, Fremouw and Shimp (1999)
studied performance of pigeons in a task
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similar to that used by Ashby and Gott (1988).
They trained pigeons to categorize rectangles
displayed on a computer screen that varied in
terms of height and width and generated by
sampling from two bivariate normal distribu-
tions. In the Divided Attention condition,
accurate performance depended on both
dimensions: Rectangles for which the height
was greater than the width were likely to
belong to Category A, whereas rectangles for
which the width was greater than the height
were likely to belong to Category B. In a
second condition, Selective Attention, accu-
rate performance depended on only one
dimension. For example, wide rectangles
might belong to one category and narrow to
the other, but the height of the rectangles was
irrelevant. They found that the pigeons’
performances were close to optimal in both
tasks.

Although Herbranson et al.’s (1999) results
suggest that pigeons are capable of information
integration; that is, for their responding to be
controlled jointly by two dimensions, such a
conclusion requires that their stimuli were
composed of perceptually separable dimen-
sions. In the terminology of research on
human perception, this means that the rect-
angles were processed in terms of their height
and width as independent dimensions, rather
than as unitary wholes (which would imply that
height and width were ‘‘integral’’ dimensions;
Garner, 1974). But as Herbranson et al. noted,
this assumption may be problematic. In a study
with humans, Krantz and Tversky (1975)
found that similarity ratings for rectangular
stimuli did not suggest that height and width
were fully separable, and that subjects instead
may have perceived differences between rect-
angles in terms of area and shape. According
to Krantz and Tversky, rectangles which are
taller than wide may have been perceived as
‘‘skinny’’, whereas rectangles which are wider
than tall may have been perceived as ‘‘fat’’.
Applying this reasoning to Herbranson et al.’s
study, the implication is that accurate perfor-
mance in their Divided Attention condition
may not require that the height and width of
the rectangles be perceived separately and
compared, that is, may not require informa-
tion integration.

Subsequent research with humans has
avoided this problem by using stimuli that
have reliably separable and independent di-

mensions which are measured in different
units. For example, studies have used Gabor
stimuli, which are computer-generated sinu-
soidal wave gratings that vary in terms of
frequency and orientation modulated by a
circular Gaussian filter (Yao, Krolak, & Steele,
1995). With category structures similar to
those employed by Herbranson et al. (1999)
and Ashby and Gott (1988), research has
shown that humans are capable of responding
accurately in information integration tasks
based on Gabor stimuli (Maddox, Ashby, &
Bohil, 2003).

We describe an experiment that investi-
gates whether pigeons can respond accurate-
ly in a two-dimensional categorization task
using Gabor stimuli that varied in orientation
and frequency. We used stimuli and category
structures that were based on Maddox et
al.(2003), and tested performance in both an
information integration (II) condition in
which accurate responding required joint
control by both dimensions and a condition
which required selective control by frequen-
cy. Maddox et al. described the latter as a
rule-based (RB) condition, because accurate
performance can be characterized in terms
of a simple rule. Unlike Herbranson et al.’s
(1999) study, perfect performance was possi-
ble in both conditions because the stimuli
from the categories did not overlap. Recent-
ly, Smith et al.(2010) have shown that
pigeons can respond accurately in both II
and RB tasks with Gabor stimuli, and that
rates of acquisition were similar. The goals of
the present experiment were to study perfor-
mance in both conditions in detail to
determine how performance varied with
orientation and frequency, whether the
pigeons’ performance was optimal, and
whether the GLC could provide an adequate
account of the results.

METHOD

Subjects

Six pigeons, designated H2, H3, H4, H5,
H7, and H8, participated as subjects and were
maintained at 85% of free-feeding weight 6
15 g by postsession feedings. They were
housed individually and allowed free access
to water and grit, in a vivarium with a 12:12 hr
light/dark cycle (lights on at 7:00 a.m.). All
were experimentally naı̈ve.
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Apparatus

Four operant chambers, 350 mm deep by
360 mm wide by 350 mm high, were used. One
wall contained an aluminum response panel in
which a VGA 6.4-inch (130 mm wide 3 97 mm
tall) LCD display with native 640 3 480
resolution was mounted. The LCD display
was located 165 mm from the side edge and
230 mm from the bottom floor to center of the
screen. Overlaying the LCD screen was a glass
panel-mounted resistive touch screen of iden-
tical size to the screen with a 4096 3 4096 point
array resolution. Screen responses were mea-
sured via a USB touch interface (Elo Touch-
Systems Inc). The displays with touch panels
were purchased from Touch Screens Inc, part
number MTF064D. There were two vertically
aligned response keys on each side of the
screen, midway between the edge of the screen
and the chamber wall. The keys were 25 mm in
diameter, and could be illuminated with five
color LED arrays. A force of approximately
0.10 N was necessary to operate each key, and
produced an audible feedback click. Centered
below the screen was a grain magazine with an
aperture (60 mm by 50 mm) 40 mm above the
floor. The magazine was illuminated when
wheat was made available by a white LED. A
houselight was centered above the LCD screen
10 mm from the top of the panel. Chambers
were enclosed in a sound-attenuating box, and
ventilation and white noise were provided by
an attached fan. Event scheduling, data
recording, and screen image display was
controlled with an IBMH-compatible micro-
computer. Chamber keys, grain magazine and
all other hardware inputs and outputs were
interfaced via a USB module with 24 bits of
digital I/O purchased from Measurement
Computing (part # USB-1024LS).

Stimuli

The stimuli for the categorization tasks were
Gabor patches. Gabor patches are sine wave
gratings modulated by a circular Gaussian
filter, and vary in terms of frequency and
orientation. Sample Gabor patches are shown
in Figures 1 and 2.

Two sets of Gabor stimuli were produced to
yield two different types of categorization tasks
(Maddox et al., 2003). Each set can be
represented in a two-dimensional space with
orientation on the x axis and frequency on the y

axis. For the RB condition, the optimal decision
bound was a horizontal line drawn through the
scatterplot (shown in Figure 1), representing a
criterial value, such that stimuli with frequen-
cies less than the criterion were assigned to one
category, while stimuli with frequencies greater
than the criterion were assigned to the other
category. The stimuli for the II condition were
obtained by rotating the stimuli from the RB
condition 45 degrees to the right. The decision
bound, scatterplot and 11 Gabor patches from
each of the two categories are shown in
Figures 1 and 2. Sample Gabor patches are also
displayed in figures, which are cropped sample
portions from the actual images used in the
sessions. These exemplars include the extreme
values for each category (i.e., the stimuli in the
lower left and upper right of the scatterplot)
and also nine intermediate values, spaced
approximately equally. The exemplars corre-
spond to the filled symbols in the figures.
Means and standard deviations, as well as
maximum and minimum values for the stimuli
in each category for both the RB and II
conditions are shown in Table 1.

Stimuli were generated as follows: First, for
the RB stimuli, random numbers were sam-
pled from a bivariate normal distribution for
each of the categories. Forty number pairs (x1,
x2) were sampled for each category, defining
40 stimuli in terms of frequency and orienta-
tion. The parameters for each category distri-
bution were the same as in Maddox et al.
(2003) such that the mean frequency values
were different (m 5 340 and 260 for Categories
A and B, respectively, with both s 5 8.66)
while the mean orientation values were the
same (m 5 125; with both s 5 8.66). The II
stimuli were generated by rotating the RB
stimuli by 45 degrees. After rotation, the
stimuli were subjected to a linear transforma-
tion so that the grand means (i.e., the averages
across both categories) for both dimensions
were the same in the II and RB conditions. To
accomplish this, 5.98 was added to each
frequency value and 245.81 added to each
orientation.

For display on the LCD screens (640 3 480
resolution), each number pair was used to
generate a stimulus by computing the fre-
quency (cycles/pixel), f 5 (x1/50+.25)/250
and orientation (degrees counterclockwise
from horizontal), o 5 x2(9/25). These formu-
las were similar to those used by Maddox et al.
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(2003), adjusted for the difference in size of
display (Maddox et al. used a 1360 3 1024
monitor), and meant to ensure that the
salience of frequency and orientation would
be comparable for a human observer. For
example, the Category A stimulus in the RB
condition indicated by the rightmost filled
triangle in Figure 1 was obtained by convert-

ing the sampled number pair (336.77, 303.77)
to a Gabor stimulus with frequency f 5
(336.77/50 + .25)/250 5 0.0279 cycles/pixel,
and orientation o 5 303.77(25/9) 5 109.36
degrees counterclockwise from horizontal.

Gabor stimuli were generated in real time
using custom software. The algorithm used was
based on the Gabor Filter (Yao et al., 1995),

Fig. 1. Stimuli for the rule-based (RB) task, including cropped Gabor images for selected exemplars (filled symbols).
Category A and B stimuli are represented by triangles and squares, respectively. Orientation and frequency are plotted on
the x and y axes, respectively. The solid line represents the optimal decision bound.
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and was integrated into a C++ program that
displayed the images based on a predeter-
mined Comma Separated Values (CSV) file
listing of frequency (cycles per pixel) and
orientation (degrees).

Procedure

Because subjects were experimentally naı̈ve,
they were first shaped to peck yellow circles
displayed in the center of the touch screen.
They were then trained to peck the two lower
right and left side keys using a modified

autoshaping procedure. When subjects re-
sponded consistently both to the touch screen
and keys, training began in the first condition.
Sessions occurred daily and at the same time
(1100h) with few exceptions. All sessions
consisted of 90 trials and sessions were run
until stability was reached in each condition.

The sequence of events on experimental
trials was as follows. After a 9-s intertrial
interval (ITI) during which the chamber was
dark, the houselight was illuminated. One
second later, the trial began with the display

Fig. 2. Stimuli for the information-integration (II) task, including cropped Gabor images for selected exemplars
(filled symbols). Category A and B stimuli are represented by triangles and squares, respectively. Orientation and
frequency are plotted on the x and y axes, respectively. The solid line represents the optimal decision bound.
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of a Gabor image on the touch screen. The
image was maximum possible size that could
be shown (640 3 480 pixels) and measured
approximately 95 mm high by 125 mm wide.
After pigeons had made five responses to the
image the screen was darkened and the two
lower keys were illuminated (e.g., left key red,
right key green), signaling the choice phase. A
single response to the correct key produced 3-s
access to grain. During reinforcement, all
illumination in the chamber was extinguished
except for the feeder light. If the response was
incorrect, the houselight flashed off and on
for 10 s (1 s off, 1 s on), and the trial was
repeated with the same Gabor stimulus. After
five responses had been made to the screen,
only the correct side key was lit and a single
response produced 1.5-s access to grain.

Pigeons were exposed to the RB and II
conditions in counterbalanced order, followed
by a replication of the II condition. The
replication was completed after the pigeons
had participated in an unrelated experiment
(not reported here) involving different Gabor
stimuli. Training continued in each condition
until the data appeared stable on visual
inspection. In the first condition, extended
training was given because we wanted to assess

the long-term stability of responding given the
novel nature of the procedure. The keys
assigned to the categories, correct key location
and color were counterbalanced across birds
and are listed in Table 2, along with the order
of conditions and number of sessions of
training.

RESULTS

Figure 3 shows the percentage of correct
choice responses for all subjects across the
three conditions (II, RB, and II replication) in
the experiment. The dashed line indicates
chance 50% responding. We continued to run
the sessions in the first condition well beyond
asymptotic performance due to the novelty of
the procedure, and also to ensure that
pigeons’ responding was stable. All pigeons
learned both tasks successfully, in terms of
responding at greater than chance accuracy,
although differences between the birds’ per-
formances were evident. Accuracy was relative-
ly low for Pigeon H3 in the II and RB
conditions, but increased in the II replication
condition. For the other pigeons, accuracy
tended to stabilize at levels between 75% and
85% in each of the conditions. Because perfect

Table 1

Stimulus characteristics for Category A and B in the rule-based (RB) and information integration
(II) conditions. Orientation (o) values are in degrees counterclockwise from horizontal and
frequency ( f ) values are in cycles per pixel.

Rule Based (RB) Information Integration (II)

Category A Category B Category A Category B

o f o f o f o f

Min 226.67 0.0200 26.96 0.0273 5.15 0.0116 22.43 0.0195
Max 119.26 0.0234 109.36 0.0302 107.35 0.0348 80.09 0.0377
Difference 145.93 0.0034 116.32 0.0029 102.20 0.0232 82.52 0.0182
SD 33.86 0.0008 29.65 0.0005 23.65 0.0055 21.13 0.0047
Mean 41.91 0.0218 41.38 0.0282 52.08 0.0227 31.21 0.0272

Table 2

Order of conditions, number of sessions per condition, and key color assignments for
individual pigeons.

RB & II Condition Order II Replication Condition

Pigeon Stimuli Cat A Key # Sessions Stimuli Cat A Key # Sessions Stimuli Cat A Key # Sessions

H2 RB Left Red 89 II Left Red 43 II Left Red 34
H3 RB Left Red 94 II Right Green 33 II Left Red 35
H4 RB Left Red 65 II Left Red 67 II Left Red 34
H5 II Left Red 70 RB Right Green 35 II Left Red 32
H7 II Left Red 59 RB Left Red 41 II Left Red 32
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Fig. 3. Percentage of correct responses for each pigeon and session. Data are shown separately for II, RB, and II
replication conditions.
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performance was possible, this indicates that
responding for all pigeons fell short of
optimality.

Average accuracies from the last 10 sessions
of each condition are reported in Table 3 for
each pigeon, as well as the overall average. The
averages were 83% (SD 5 .037), 82% (SD 5
.049) and 88% (SD 5 .032) correct for the II,
RB, and II replication conditions, respectively.
A repeated measures analysis of variance
(ANOVA) found that the effect of condition
was not significant, F(2,10) 5 2.19, p . .15.
This suggests that there were no systematic
differences in asymptotic accuracy between the
conditions.

To investigate whether different amounts of
training were necessary for the pigeons to
acquire the II and RB tasks, we defined a post
hoc acquisition criterion of an average of 75%
accuracy across the last three sessions, and
then determined how many sessions were
required to reach this criterion, for each
pigeon and condition. Table 3 shows the
results. Pigeon H3 never reached the 75%
criteria in the first two conditions, but did so
after 11 sessions in the II replication condi-
tion. Averaged across pigeons (omitting H3’s
data from the first two conditions), 14.40,
22.20 and 12.17 sessions were required to
reach 75% accuracy in the II, RB, and II
replication conditions, respectively. To com-
pare sessions to criterion across conditions, we
conducted a repeated measures ANOVA
(omitting the data from H3). The effect of
condition was not significant, F(2,8) 5 0.78, p
. .40. This indicates that there were no
systematic differences in rate of acquisition
across conditions.

A major goal was to determine whether
responding in the II condition was controlled
by both stimulus dimensions, while respond-
ing in the RB condition was only controlled by
frequency. In previous studies with humans,
this question has been addressed by determin-
ing whether a uni- or multidimensional model
provided a better fit to the data (see Maddox &
Ashby, 2004, for review). We will adopt this
approach, which will also illustrate how GLC is
applied to data from this procedure. However,
none of the prior human studies have aug-
mented these model comparisons with a
detailed assessment of performance, specifi-
cally how choice responding varies with orien-
tation and frequency. We report such an
assessment below. In all cases, analyses are
based on individual-subject data from the last
10 sessions (900 trials) of each condition.

Multidimensional Model (General Linear Classifier)

According to the General Linear Classifier
(GLC), which is one of a family of models
known as General Recognition Theory (GRT;
Ashby, 1988; Ashby & Gott, 1988; Ashby &
Townshend, 1986), stimuli are represented in
a two-dimensional perceptual space, similar to
Figures 1 and 2. The subject learns to associate
different regions of the perceptual space with
different responses. The two regions in the
perceptual space are defined by a linear
decision bound. When a stimulus is presented
on a given trial, the distance of the stimulus
from the decision bound determines the
probability of a choice response. Specifically,
the decision bound is defined as:

dXzcY ze~0 ð1Þ

Table 3

Average accuracy and number of sessions to reach 75% accuracy for individual pigeons for each
condition in the experiment.

Pigeon

II RB II Replication

% Accuracy Sessions to 75% % Accuracy Sessions to 75% % Accuracy Sessions to 75%

H2 0.83 9 0.80 59 0.80 26
H3 0.64 - 0.69 - 0.86 11
H4 0.86 12 0.90 14 0.91 9
H5 0.87 19 0.84 10 0.88 6
H7 0.92 20 0.88 4 0.90 11
H8 0.88 12 0.78 24 0.91 10
Overall 0.83 14.40 0.82 22.20 0.88 12.17

Note. H3 never reached criterion accuracy in the II or RB condition.
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Where X and Y are orientation and frequency,
respectively, and d, c, and e are constants.
When a stimulus X0, Y0 is presented on a trial,
the distance of the stimulus from the decision
bound is given by:

h X0,Y0ð Þ~ dX0zcY0zeffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2zc2

q : ð2Þ

For h 5 0, the probability of responding
Category A, p(A) 5 .50. For h . 0, p(A) .
.50 and for h , 0, p(A) , .50. Specifically, p(A)
is given as the cumulative normal distribution
function (W) evaluated at h(X0,Y0):

p Að Þ~W
h X0,Y0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

hzs2
c

q
0
B@

1
CA: ð3Þ

The denominator of Equation 3 represents the
noise or error variance in the model, and
includes terms for both perceptual (s . h

2)
and criterial variance (sc

2). Although other
models within GRT can distinguish between
perceptual and criterial variance (see Ashby,
1992), for the GLC only a single parameter, s,
is estimated which represents combined per-
ceptual and criterial variance. Effectively, the
GLC represents a generalization of signal
detection theory to the two-dimensional case
(Ashby & Townshend, 1986).

In applying the GLC to data from the
present experiment, three parameters must
be estimated: the slope and intercept of the
decision bound, and the noise parameter, s.
Note that the slope and intercept are defined
as 2d/c and 2e/c, respectively.

Unidimensional Models

Two unidimensional models were also con-
sidered. According to the unidimensional-
orientation (Uni-O) model, subjects respond
on the basis of orientation, but variation in
frequency has no effect. The unidimensional-
frequency (Uni-F) model is similar except that
decisions are based entirely on frequency.
These models could be considered as special
cases of the GLC in which the decision bound is
represented as a straight horizontal line (Uni-F)
or straight vertical line (Uni-O) in Figures 1
and 2. Both models have two parameters: a
critical value on the particular dimension
(Xcrit) and a noise parameter, s. For stimulus

X presented on a given trial, the probability of
responding Category A is defined as

p Að Þ~W
X {Xcrit

s

	 

: ð4Þ

Parameter Estimation

Maximum likelihood estimation was used to
obtain parameters for the GLC and unidimen-
sional models for individual-subject data.
Specifically, parameter values that minimized
the negative log-likelihood function were
obtained through a two-step process. First, a
simulated annealing algorithm (Goffe, Ferrier,
& Rogers, 1994) was used to estimate a local
minimum, and then parameter estimates were
refined using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method (Avriel, 2003). Initial
parameter values were randomly determined.
Model predictions and optimization proce-
dures were implemented in a computer prog-
ram using routines in the open-source
TPMATH library and compiled with Free
Pascal version 2.0.2 (retrieved on 27 August
2006 from http://www.unilim.fr/pages_perso/
jean.debord/tpmath/tpmath.htm and http://
www.freepascal.org, respectively). Repeated
simulations showed that parameter estimates
were stable for all subjects and conditions and
did not depend on initial values.

Model Comparison

Model fits for all subjects and conditions
were evaluated using the Akaike Information
Criterion (AIC; Akaike, 1974). The AIC is a
model comparison statistic and defined as

AIC~{2 ln Lz2v, ð5Þ

where L is the likelihood function and v is the
number of parameters estimated. AIC can be
used to compare the adequacy of fits for
different models applied to the same data: The
model with the lowest AIC value has the best
fit. For each data set, Table 4 indicates the
best-fitting model by displaying the lowest AIC
value in boldface. Table 4 also shows the
variance accounted for (VAC) by each model.

Results in Table 4 show that for both the
original II and replication conditions, the GLC
model had the lowest AIC value in 11 out of 12
cases (the exception being H3, original II
condition, for which the Uni-O model had the
lowest AIC, suggesting that responding was
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controlled exclusively by orientation). Aver-
aged across subjects, the variance accounted
for by the GLC in the original II and
replication conditions was 0.89 and 0.88
respectively. This confirms that pigeons’ re-
sponding was determined by both stimulus
orientation and frequency values in the II task
(Figure 2).

Table 4 also shows that for the RB condi-
tion, the Uni-F model had the lowest AIC value
for all subjects. Across subjects, the average
variance accounted for by the Uni-F model was
0.81. This shows that when frequency was the
only relevant dimension, it acquired primary
control over choice responding.

Parameter values for each model are listed
in Table 5. Overall, GLC parameter values
were reasonably consistent across subjects and
replications of the II condition with the
exception of H3. Estimates of noise parame-
ters were also similar across replications of the
II condition, and in the RB condition.

To provide a more concrete illustration of
the application of the GLC to the data,
Figure 4 shows bubble scatterplots with the
estimated decision bounds for selected sub-
jects in the II and RB conditions. We chose
those pigeons for which the GLC accounted
for the highest and lowest percentage of
variance, which were H7 and H3 respectively,

in both conditions (see Table 5). In Figure 4,
p(A) for each stimulus is indicated by the size
of the bubble, and the solid line indicates the
inferred decision bound based on the GLC fit.
Results for H7 in the II condition (upper left
panel) show that the decision bound was close
to optimal, approximating the major diagonal
(cf. Figure 2). By contrast, the decision bound
for H3 in the II condition (upper right panel)
had a nearly vertical slope. This indicates that
responding for this pigeon was insensitive to
frequency and determined largely by orienta-
tion, consistent with the model comparison
which found that the Uni-O model provided a
better fit than the GLC. Note also the
preponderance of large bubbles to the left of
the decision bound; effectively, H3 responded
Category A for stimuli that had relatively low
orientation values. For the RB condition
(lower panels), responding for H7 was highly
accurate (96%) with a decision bound that was
again close to optimal (cf. Figure 1). Respond-
ing for H3 (right panel) was much less
accurate (69%) and the decision bound had
a positive slope, caused by the higher accuracy
for stimuli with relatively low orientation
values. Comparing results for these pigeons,
we see that responding for H7 was controlled
jointly by two dimensions in the II condition
and by one dimension in the RB, resulting in

Table 4

Shown are the Akaike information criteria (AIC) and variance accounted for (VAC) statistics for
the General Linear Classifier (GLC), unidimensional frequency (Uni-F) and unidimensional
orientation (Uni-O) models when fitted to individual data from each condition. The best-fitting
model (i.e., lowest AIC value) in each condition is indicated by boldface.

Pigeon Condition

GLC Uni-F Uni-O

AIC VAC AIC VAC AIC VAC

H2 II 73.67 0.89 942.99 21.45 110.92 0.07
RB 81.28 0.83 77.34 0.82 112.00 0.00

I II Replication 84.46 0.79 107.94 0.08 102.82 0.21
H3 II 84.08 0.83 104.73 0.24 80.33 0.83

RB 105.15 0.58 101.94 0.55 114.18 0.03
II Replication 78.45 0.87 112.17 0.03 99.00 0.34

H4 II 66.62 0.87 110.06 0.09 101.45 0.25
RB 55.90 0.95 51.91 0.95 114.25 0.00
II Replication 64.74 0.90 105.07 0.18 106.71 0.15

H5 II 66.18 0.92 108.58 0.12 103.35 0.22
RB 76.13 0.90 72.17 0.90 114.76 0.00
II Replication 61.55 0.90 106.09 0.15 104.33 0.18

H7 II 54.55 0.96 2283.31 21.29 101.09 0.23
RB 51.96 0.96 47.98 0.96 113.13 0.00
II Replication 56.27 0.90 109.79 0.08 97.99 0.27

H8 II 60.86 0.85 109.53 0.06 97.10 0.25
RB 80.46 0.88 83.94 0.71 107.09 0.14
II Replication 56.28 0.93 107.15 0.13 101.74 0.22
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highly accurate performance, whereas re-
sponding for H3 showed relatively more
control by orientation than frequency in the
II condition, and some influence of orienta-
tion in the RB condition, giving less accurate
performance.

Thus the model comparison analyses and
Figure 4 show how the GLC can provide an
account of responding in the II and RB
conditions, and be used to address the
question of whether responding is controlled
by one or two dimensions. For a more detailed
understanding of the data, and a more
stringent test of whether the GLC is an
adequate model for performance in this task,
we turn next to an analysis of how asymptotic
performance was related to stimulus charac-
teristics.

Detailed Analyses of Asymptotic Performance

Figures 5 through 7 show the probability of
a choice response for Category A as a function
of orientation for all subjects in the II, RB, and
II replication conditions, respectively. Catego-
ry A stimuli are indicated by unfilled triangles,
and Category B stimuli are indicated by filled
squares. The overall accuracy (percentage
correct) is also displayed in the upper right
corner of each panel. Note that results are
shown as a function of orientation only in
these figures for sake of economy. Because

orientation and frequency were positively
correlated in the II conditions, results would
look similar if plotted as a function of
frequency. For the RB condition, frequency
was the relevant dimension and its control has
already been established through the model
fits; because orientation was irrelevant, plot-
ting the data as a function of orientation
should reveal no systematic pattern.

For the original II and replication condi-
tions (Figures 5 and 7), a systematic pattern of
responding was found for Category A. For all
subjects, p(A) for Category A stimuli decreased
with orientation, and in most cases, also
decreased with smaller values of orientation
so that an inverted-U shaped pattern was
obtained. The implication is that for Category
A, accuracy was greater for stimuli that were in
the middle of the range of orientations,
compared to stimuli with orientations that
were near the ends of the range. More variable
results were obtained for Category B stimuli.
In the majority of cases, there was no
systematic relationship between choice re-
sponding and orientation. However, for H2
in the original II condition, and H4 and H5 in
the replication, p(A) tended to increase with
increases in orientation. A similar pattern was
obtained for H3, original II condition, consis-
tent with the control by orientation obtained
in the model fits (Table 4).

Table 5

Model parameters for each of the models when fitted to data from individual pigeon for
each condition.

Pigeon Condition

GLC Uni-F Uni-O

Slope Intercept Noise Mean Sigma Mean Sigma

H2 II 0.011 0.016 0.004 20.024 0.010 0.962 1.713
RB 0.000 0.024 0.004 0.024 0.003 91.207 371.505

I II Replication 0.014 0.017 0.006 0.031 0.022 0.418 0.984
H3 II 0.139 20.073 0.054 0.025 0.011 0.702 0.413

RB 0.002 0.024 0.006 0.025 0.006 0.525 4.857
II Replication 0.017 0.014 0.005 0.030 0.031 0.590 0.716

H4 II 0.015 0.014 0.004 0.024 0.018 0.772 0.779
RB 0.000 0.024 0.002 0.024 0.002 96.755 784.682
II Replication 0.012 0.016 0.004 0.026 0.012 0.668 1.027

H5 II 0.014 0.015 0.004 0.026 0.015 0.693 0.833
RB 0.000 0.025 0.003 0.025 0.003 0.029 17.092
II Replication 0.013 0.015 0.004 0.024 0.013 0.816 0.906

H7 II 0.014 0.015 0.003 0.727 0.085 0.669 0.757
RB 0.000 0.024 0.002 0.024 0.002 91.954 476.486
II Replication 0.015 0.014 0.004 0.026 0.017 0.671 0.668

H8 II 0.015 0.015 0.004 0.028 0.019 0.583 0.656
RB 20.003 0.026 0.004 0.024 0.004 0.375 1.565
II Replication 0.014 0.014 0.004 0.024 0.014 0.794 0.790
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Fig. 4. Bubble scatterplots showing decision bounds inferred from fits of the GLC to individual data from selected
subjects in the II and RB conditions. Shown are results for the best (H7; left panels) and worst (H3; right panels) fitting
data. Open and filled circles indicate Category A and B stimuli, respectively. The size of the circles shows the probability
of a Category A response, p(A). The solid line indicates the decision bound corresponding to the parameters estimated
for the GLC (see Table 5).
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Figure 6 shows p(A) as a function of
orientation for the RB condition. For Category
A, p(A) decreased at high orientation values
for 2 subjects (H2 and H3), increased as
orientation increased for H8, and showed no
systematic change for H4, H5 and H7. For

Category B stimuli, p(A) increased with orien-
tation for H8, and was maximal for midrange
orientation values for H2, H3 and H7. Using
the separation between p(A) for Category A
and B stimuli as a visual proxy for accuracy,
Figure 6 shows that accuracy was greater at

Fig. 5. Probability of a Category A response (p(A); y axis) as a function of orientation (x axis) for the II condition,
shown separately for Category A (unfilled triangles) and Category B (filled squares) stimuli. Each panel shows data for an
individual pigeon averaged over the last 10 sessions of training.
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relatively low-range orientation values com-
pared to midrange (H5, H7), high range (H4),
or both mid- and high range values (H2, H3,
H8). Thus across subjects there was a trend for
accuracy in the RB condition to decrease as
orientation increased.

Overall, results in Figures 5 through 7 show
that performance varied systematically as a
function of orientation in both II and RB
conditions. Results were most consistent across
subjects for Category A responding in the II
conditions, for which in every case that

Fig. 6. Probability of a Category A response (p(A); y axis) as a function of orientation (x axis) for the RB condition,
shown separately for Category A (unfilled triangles) and Category B (filled squares) stimuli. Each panel shows data for an
individual pigeon averaged over the last 10 sessions of training.

MULTIDIMENSIONAL CATEGORY LEARNING 319



accuracy levels were substantial overall
(.75%) and the GLC was the best fitting
model, indicating that responding was con-
trolled by both dimensions, accuracy was
highest for orientations in the middle of the
range (,45 degrees) and decreased as orien-

tation tended to either extreme (0 or 90
degrees). It is important to note that the
systematic patterns that were observed were all
nonoptimal, in the sense that optimal re-
sponding would have shown no within-catego-
ry trend as a function of orientation, and the

Fig. 7. Probability of a Category A response (p(A); y axis) as a function of orientation (x axis) for the II replication
condition, shown separately for Category A (unfilled triangles) and Category B (filled squares) stimuli. Each panel shows
data for an individual pigeon averaged over the last 10 sessions of training.
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observed patterns were associated with de-
creased accuracy.

The systematic patterns in Figures 5
through 7—especially the inverted-U shaped
functions in the II conditions—represent a
possible difficulty for the GLC as a model of
category learning. Because the stimuli in the II
condition were approximately equidistant
from the optimal linear decision bound (see
Figure 3), it seems unlikely that the GLC could
predict that performance should vary system-
atically as a function of orientation. To assess
the adequacy of the GLC more rigorously, we
compared predicted and obtained values for
GLC fits to individual data, and examined
standardized residuals for these fits.

Regression Analyses

In order to test whether there were system-
atic deviations in the GLC residuals that might
correspond to the patterns noted above in
Figures 5 through 7, we conducted a series of
polynomial regressions. Specifically, we used
the orientation and the square of the orienta-

tion in a multiple regression to predict the
standardized residuals. The orientation values
were centered prior to squaring to avoid
problems with multicollinearity. This analysis
allows us to test the significance of both linear
and quadratic relationships in the residuals.
Regressions were performed for individual
data for all conditions, as well as for the group
mean data.

Results of the polynomial regressions are
shown in Table 6. For both the II and II
replication conditions, the quadratic coeffi-
cient for Category A residuals was negative and
statistically significant for each subject and the
group mean data with the exception of H3,
original II condition. This means that a
significant negative quadratic trend was ob-
tained in the GLC residuals for each case in
which the GLC provided the best fit to the
data. This confirms that the GLC is unable to
account for the inverted-U shaped pattern
evident in Figures 5 and 7. For Category B
residuals in the II conditions, linear coeffi-
cients were positive for all subjects with the

Table 6

Results from polynomial regressions of standardized residuals for all pigeons, categories, and
conditions. Shown are the beta weights (b) for the linear and quadratic components of the
standardized residuals from the GLC fits regressed on the predicted values, and the variance
accounted for (R2), for both Category A and B stimuli.

II

Category A Category B

b Linear b Quadratic R2 b Linear b Quadratic R2

H2 0.09 20.85 *** 0.69 *** 0.34 0.08 0.07
H3 0.4 0.02 0 20.21 0.4 ** 0.19 *
H4 20.14 20.77 *** 0.67 *** 0.35 * 0.30 * 0.24 **
H5 20.14 20.57 *** 0.39 *** 0.27 20.36 * 0.17 *
H7 20.23 20.60 *** 0.49 *** 0.36 * 0.27 0.23 **
H8 0.11 20.88 *** 0.73 *** 0.26 20.46 ** 0.24 **
Mean 20.07 20.92 *** 0.89 *** 0.48 ** 0.22 0.31 **
RB
H2 0.3 20.24 0.13 * 20.16 20.55 *** 0.38 ***
H3 0.57 *** 20.44 *** 0.46 *** 20.62 *** 20.24 * 0.51 ***
H4 0.15 0.16 0.05 20.18 20.49 ** 0.31 **
H5 0.3 0.03 0.1 20.46 ** 0.35 * 0.25 **
H7 0.29 20.28 0.15 * 20.47 ** 20.26 0.36 ***
H8 0.09 0.67 *** 0.48 *** 20.23 0.03 0.05
Mean 0.51 ** 0.26 0.26 ** 20.65 *** 20.34 ** 0.65 ***
II Rep
H2 0.2 20.84 *** 0.64 *** 0.06 0.09 0.01
H3 20.1 20.73 *** 0.58 *** 0.31 20.07 0.1
H4 20.04 20.84 *** 0.72 *** 0.39 ** 0.21 0.22 **
H5 20.30 * 20.56 *** 0.50 *** 0.49 ** 0.12 0.27 **
H7 20.15 20.83 *** 0.78 *** 0.52 *** 20.13 0.26 **
H8 20.12 20.75 *** 0.62 *** 0.34 * 20.03 0.11
Mean 20.09 20.90 *** 0.89 *** 0.58 *** 0.05 0.34 ***

Note. *p , .05; **p , .01; ***p , .001.
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exception of H3, original II condition. The
positive linear coefficient was significant for
H4 and H7 and the group mean data for the
original II condition, and for H4, H5, H7, H8,
and the group mean data in the II replication
condition. This suggests that GLC predictions
for Category B also showed systematic devia-
tions from obtained values, with residuals
tending to increase linearly with predicted
values.

For results from the RB category, linear
coefficients for Category A residuals were
positive for all subjects, and significant for
H3 and the group mean data. For Category B
residuals, linear coefficients were negative for
all subjects, and were significant for H3, H5,
H7 and the group mean data. This suggests
that the predictions of the GLC for the RB
condition also showed systematic deviations
from the data. The signs of the linear
coefficients indicate that p(A) values tended
to converge for the two categories as orienta-
tion increased, consistent with a decrease in
accuracy.

Figure 8 provides a summary of the residual
analyses based on the group-mean data. The
left panels show the obtained data for Catego-
ry A and B (unfilled triangles and filled
squares, respectively) and GLC predictions
(x’s and +’s, respectively), whereas the right
panels show the standardized residuals for
Category A and B (unfilled triangles and filled
squares, respectively). Results for the II, RB
and II replication conditions are shown in the
upper, middle, and lower row of panels,
respectively.

Figure 8 clarifies how the GLC has failed to
describe systematic features in the current
data. The inverted-U shaped pattern that is
evident for Category A in the II conditions
produces a sharp decrease in p(A) for high
values of orientation, to levels below .50. For
the GLC to predict this decrease in accuracy
for Category A, the slope of the decision
bound must increase, so that the upper part of
the line in Figure 2 tilts toward the Category A
stimuli. But this change in slope means that
the decision bound will tilt towards the
Category B stimuli for low levels of orientation.
This will produce weaker predictions for
Category B for low orientation relative to high
orientation, which will result in an increase in
the residuals for Category B as orientation
increases. Thus the significant positive linear

coefficients for Category B residuals can be
understood, at least in part, as a side effect of
the GLC trying to capture the decreasing limb
of the inverted-U pattern for Category A. For
the RB condition, the GLC is unable to
describe the opposing trends evident in the
data: p(A) decreases with increases in orienta-
tion for Category A but increases for Category
B, such that overall accuracy is reduced for
high-range orientation values.

The reason that the GLC is unable to
describe the patterns observed in both the II
and RB conditions is because it predicts that
any linear trend in Category A and B predic-
tions must be correlated. This is because such
a trend can only be produced by varying the
slope of the decision bound. For example, if
the slope in Figure 2 decreases, such that
predicted p(A) for Category A increases as a
function of orientation (i.e., strength of
prediction for Category A increases), then
predicted p(A) for Category B must also
increase (i.e., strength of prediction for
Category B decreases). By contrast, if the slope
of the decision bound increases, then predict-
ed p(A) for Category A will decrease with
orientation, and predicted p(A) for Category B
must also decrease. Thus the fundamental
failure of the GLC applied to the present data
is that it is unable to predict trends in p(A) for
Categories A and B as a function of orienta-
tion, that are not correlated.

DISCUSSION

The primary goal of this study was to explore
the performance of pigeons in a two-dimen-
sional category learning task. The stimuli were
dimensionally separable Gabor patches that
varied in terms of their frequency and orien-
tation, similar to those that have been used in
research on human category learning (Mad-
dox et al., 2003). We examined two conditions,
which differed in terms of whether accurate
performance required control by both dimen-
sions (information integration; II) or a single
dimension (rule based; RB). Results showed
that pigeons learned both category tasks, with
the average percentage of correct responses of
85.5% and 82% in the II and RB conditions,
respectively. Although perfect performance
was possible, responding in all conditions fell
short of optimality. Model comparison analy-
ses showed that the GLC (Ashby, 1992), which
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has been used to describe category learning by
humans in similar tasks, provided a better
account of responding in the II conditions,
but a unidimensional model that assumed

control only by frequency provided a better
account of results from the RB condition. This
confirms that pigeons’ choice responding was
jointly controlled by orientation and frequen-

Fig. 8. The left column shows obtained probability of a Category A response (p(A); y axis) as a function of p(A)
predicted by the General Linear Classifier (GLC; x axis), for the average data from the II condition (upper panel), RB
condition (middle panel), and II replication condition (lower panel). Obtained data for Category A and B are shown by
unfilled triangles and filled squares, respectively. Predictions of the GLC for Category A and B are shown by x’s and +’s,
respectively. The right column shows the standardized residuals from the GLC fits (y axis) plotted as a function of
orientation (x axis).
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cy, or, expressed in the terminology of human
research on category learning, that pigeons
can pass an empirical test for information
integration based on dimensionally separable
stimuli.

Our failure to find optimal performance by
pigeons in the present experiment contrasts
with results of Herbranson et al. (1999). They
found that their pigeons performed nearly
optimally when categorizing rectangular stim-
uli that varied in terms of height and width. In
their procedure, stimulus categories were
overlapping bivariate normal distributions
and perfect performance was impossible.
Nevertheless, Herbranson et al. found that
performance was close to that predicted by an
optimal linear decision bound. There were
several procedural differences between Her-
branson et al.’s study and the present exper-
iment that might account for the different
results. Two have already been mentioned—
the use of rectangular stimuli and overlapping
category distributions in Herbranson et al.’s
study, compared to Gabor stimuli and non-
overlapping category distributions in the pres-
ent study. However, there is no apparent
reason why either of these factors should affect
whether performance is optimal. Another
possibility is that our task may have been more
difficult than Herbranson et al.’s because
stimuli from the two categories were closer
together in relative terms, that is, variability
between categories may have been less than
that within categories. To investigate this
possibility, we calculated effect sizes for the
distance between category centroids for the II
condition in both Herbranson et al. and the
present study. Specifically, effect size was
defined as the Euclidean distance between
the centroids of Categories A and B, divided by
the pooled standard deviation. For Herbran-
son et al., the effect size was 3.29, whereas for
the present study it was 1.33. This means that
the categories in our study, although not
overlapping, were arguably closer together
than those in Herbranson et al. The implica-
tion is that the category tasks in the present
experiment may have been more difficult than
Herbranson et al., which might account for
the suboptimal performance.

The present results also contribute to our
understanding of stimulus control. Previous
research has tested how different elements of a
stimulus acquire control over behavior by

examining performance in matching-to-sam-
ple tasks in which either a compound stimulus
(e.g., white lines superimposed on a red
background) or an element (i.e., white lines
on a black background, or a red key) is
presented as a sample, and elements are
presented as choice stimuli (e.g., Maki &
Leith, 1973). One finding has been that either
element of a compound can control choice
responding, but accuracy levels are greater
when only elements are presented. These
results have been interpreted as evidence for
attentional processes in pigeons, that is, that
pigeons are capable of attending to either or
both elements in a compound (see Zentall,
2005, for review). In behavioral terms, attend-
ing refers to behavior, potentially covert, that
brings an organism into contact with a
particular stimulus or attribute (Nevin, Davi-
son & Shahan, 2005). The II and RB condi-
tions in the present experiment resemble
shared and divided attention tasks, respective-
ly. That similar levels of accuracy were
achieved in both conditions shows that pi-
geons’ responding can be controlled jointly or
selectively, depending on the reinforcement
contingencies, by different stimulus dimen-
sions, not just by elements, as shown by
previous research.

An unexpected finding was that although
the GLC provided a good account of the data
overall, with averages of 88% and 85% variance
accounted for in the II and RB conditions,
respectively, the data deviated systematically
from the GLC’s predictions. Specifically, we
found that the probability of a Category A
response, p(A), was an inverted-U shaped
function of orientation for Category A stimuli
in the II tasks (see Figures 5 and 7). Polyno-
mial regressions on residuals confirmed that
deviations from GLC predictions were system-
atic (see Table 6 and Figure 8), and were also
obtained when the II condition was replicated.

Systematic deviations from the GLC predic-
tions were also obtained for the RB condition.
Results showed that these were caused by a
decreasing trend in accuracy as orientation
increased (see Figure 8, middle panels). This
trend suggests an interaction between stimulus
dimensions such that discriminative control by
frequency was better at relatively low (i.e., near
horizontal) than relatively high (i.e., near
vertical) orientation values. Reasons for this
finding are unclear. It appears to challenge the
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independence predicted by the assumption that
orientation and frequency are separable dimen-
sions, but might be attributable to other factors.
Future research should test the reliability of this
result when stimulus characteristics are varied
(e.g., different ranges used for frequency and
orientation), and whether a similar interaction
is obtained when orientation is the relevant
dimension rather than frequency.

The systematic deviations evident in Fig-
ure 8 and Table 6 suggest that the GLC is an
inadequate model for pigeons’ category learn-
ing. The inverted-U shaped pattern for Cate-
gory A stimuli in the II condition may be
related to the pigeons’ suboptimal perfor-
mance, because it was associated with de-
creased accuracy for orientations that were
outside the middle range and were close to
horizontal or vertical. Exactly why this pattern
was obtained is unclear. One possibility is that
because the stimuli were normally distributed,
those with relatively low or high orientation
values were less likely to occur. Thus, the
decrease in performance associated with the
inverted-U shaped pattern suggests that per-
formance was worse for exemplars which were
presented relatively less often. Although this
explanation seems reasonable, it remains
uncertain why a similar pattern was not
observed for Category B. However, the fact
that we obtained and successfully replicated
the same pattern of results with 6 pigeons
suggests that our findings are reliable. An
important goal for future research will be to
determine whether similar results are obtained
with humans responding on II category
learning tasks. If so, then a new model for
category learning in the information-integra-
tion task may be warranted. One possibility is
that existing behavioral models for signal
detection (e.g., Davison & Nevin, 1999; Davi-
son & Tustin, 1978; White & Wixted, 1999)
might be extended to incorporate two stimu-
lus dimensions. Whether this approach might
be fruitful is a question for future research.
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